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Interactions of molecules with their environment influence the course and outcome of almost
all chemical reactions. However, classical computers struggle to accurately simulate complicated
molecule-environment interactions because of the steep growth of computational resources with
both molecule size and environment complexity. Therefore, many quantum-chemical simulations are
restricted to isolated molecules, whose dynamics can dramatically differ from what happens in an
environment. Here, we show that analog quantum simulators can simulate open molecular systems
by using the native dissipation of the simulator and injecting additional controllable dissipation. By
exploiting the native dissipation to simulate the molecular dissipation—rather than seeing it as a
limitation—our approach enables longer simulations of open systems than are possible for closed
systems. In particular, we show that trapped-ion simulators using a mixed qudit-boson (MQB)
encoding could simulate molecules in a wide range of condensed phases by implementing widely used
dissipative processes within the Lindblad formalism, including pure dephasing and both electronic
and vibrational relaxation. The MQB open-system simulations require significantly fewer additional
quantum resources compared to both classical and digital quantum approaches.

Most molecular dynamics is governed by interactions
between molecules and their surroundings. With the
exception of molecules in vacuum or dilute gas, chem-
istry occurs in environments—from solvents to crystals
to proteins—which decohere the molecule’s quantum
state and can transfer energy to and from the mo-
lecule. Molecular dynamics in condensed phase can
differ completely from that in the isolated molecule be-
cause molecule-solvent interactions can induce processes
such as non-adiabatic transitions, charge transfer, and
barrier crossing [1].

Accurate simulations of an isolated molecule’s
quantum dynamics are challenging on conventional com-
puters due to the exponential growth of the Hilbert
space with molecular size. Extending such simulations
to an open-system treatment is even more difficult and
usually prohibitive, as it often involves representing the
molecule’s mixed state with a density matrix. These lim-
itations have constrained the most accurate open-system
simulation methods to small molecules [2–7].

Quantum computers promise to simulate molecular
quantum dynamics efficiently (in polynomial time in sys-
tem size), but, like classical computers, usually require
more resources to simulate open systems. Quantum com-
puters can outperform classical ones by encoding the
molecular quantum states on an inherently quantum
platform [8–11]. Nevertheless, current quantum al-
gorithms for simulating open-system dynamics require
more quantum resources (such as qubits and operations)
to represent the environment, making them prohibitively
expensive for current quantum hardware [12–17].

Analog quantum simulators promise to simulate
quantum dynamics with even fewer resources. They
are purpose-built devices that mimic the time evolution
of particular systems, with resource requirements smal-
ler than those of digital quantum computers because
they do not require universal programmability. For
molecular simulations, analog simulators based on the
mixed-qudit-boson (MQB) encoding represent molecular
electronic and vibrational degrees of freedom using the

qudit and bosonic modes of a trapped ion or a circuit
quantum electrodynamics (cQED) system [18]. Using
bosonic degrees of freedom to simulate nuclear motions—
instead of encoding them in many qubits—reduces the
quantum resource requirements by about an order of
magnitude compared to digital quantum simulation [18].
Experimental demonstrations of MQB simulation in-
clude simulations of conical intersections [19–21] and
vibronic spectra [22].

However, MQB simulations of molecular dynamics
have not been fully generalised to open-system dynamics,
with existing work limited to specific types of dissipa-
tion [18]. Similarly, experiments demonstrating open-
system simulations of electronic energy transfer [23–25]
considered only some noise mechanisms or were not ap-
plicable to molecular quantum dynamics because bosonic
modes were used only to represent the environment, not
the system of interest.

Here, we present a framework for simulating open-
system molecular dynamics with an MQB simulator.
Our approach has two significant strengths. First, the
dissipation can be engineered using both native dissip-
ation and injected controllable dissipation. Doing so
turns decoherence mechanisms that usually limit analog
simulations into a resource that makes the simulations
more powerful. Second, engineering the dissipative pro-
cesses requires few additional resources, whose number
is often independent of the molecular size. In particular,
we show how chemically relevant dissipative processes—
including both electronic and vibrational relaxation and
dephasing—can be implemented with existing trapped-
ion technology. Overall, MQB simulators can solve the
harder problem of open-system simulation with minimal
overhead and with greater resistance to errors.

I. MOLECULAR OPEN-SYSTEM DYNAMICS

There are many approaches to modelling open mo-
lecular systems, depending on where the molecule-
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environment boundary is drawn and what techniques are
used to simulate either the molecule, the environment,
or their interaction [1, 26]. In all cases, open-system
simulations aim to simulate the environment using a
simpler method than that used for the molecule itself.
The approaches to simulating the environment range
from ones that explicitly describe the components of
the environment, often at considerable computational
cost, to those that treat either the environment or its
influence on the molecule in an effective way.

A logical starting point for developing analog open-
system approaches is the Lindblad master equation [27,
28], the most general completely positive and trace-
preserving Markovian master equation. It describes the
dynamics of the molecule’s reduced density matrix ρ (we
set ℏ = 1 throughout) by

dρ

dt
= −i[Hmol, ρ] +

∑
i

D [Li] ρ, (1)

where Hmol is the Hamiltonian of the isolated molecule.
Each dissipative superoperator D [Li] acts on ρ as

D [Li] ρ = γmol
i

(
LiρL

†
i − 1

2{L
†
iLi, ρ}

)
, (2)

describing a dissipative process with rate γmol
i and Lind-

blad operator Li.
In chemical contexts, there are usually four domin-

ant dissipation mechanisms, which can be derived from
microscopic principles. Equation (1) is usually derived
from the related Redfield master equation, which is
obtained from a perturbative treatment of the system-
environment coupling in the Markovian limit [1, 26].
A Redfield equation is usually converted to a Lindblad
equation by making the secular approximation [1, 26, 28],
which is valid when the timescales of interest are slower
than any rapidly oscillating terms in the master equa-
tion, allowing them to average out. In the secular limit,
population relaxation and pure dephasing become de-
coupled [1, 26], making it possible to classify the most
important dissipative processes in open chemical systems.
With typical timescales given in fig. 1, they are:

1. Radiative electronic relaxation is the decay of ex-
cited electronic populations by spontaneous emis-
sion, including both fluorescence and phosphores-
cence. It is described by the dissipator D[|n⟩ ⟨m|]
and rate γmol

nm for electronic states with energies
εm > εn. Non-radiative electronic relaxation, such
as intersystem crossing and internal conversion,
are indirect consequences of vibrational relaxation
and vibronic coupling, meaning that they are ac-
counted for by the processes below.

2. Vibrational heating and cooling are the gain and
loss of energy in molecular vibrational modes, and
are the most important way for a molecule to
reach equilibrium with a thermal environment.
For mode j, heating and cooling have dissipat-
ors D[a†j ] and D[aj ], with rates γmol

+,j and γmol
−,j , re-

spectively. Detailed balance at temperature Tmol

requires γmol
+,j = γmol

−,j exp(−νmol
j /kBT

mol) for mode
frequency νmol

j .

3. Electronic pure dephasing is the reduction in
phase coherence between electronic eigenstates, de-
scribed by the dissipator D[|n⟩ ⟨n|] and rate γmol

e,n

for electronic state n.

4. Vibrational pure dephasing is the decay of phase
coherence between vibrational states, described by
the dissipator D[a†jaj ] and rate γmol

v,j for vibrational
mode j.

II. ANALOG OPEN-SYSTEM SIMULATION

An analog simulator evolves in time in the same way
as the molecule being simulated, so that the molecule’s
dynamics can be retrieved by measuring the simulator
evolution. To achieve this, the molecular Hamiltonian
Hmol must be mapped onto the controllable simulator
Hamiltonian Hsim. To allow for a change of time scales,
the mapping may include a scaling factor F such that
Hsim = FHmol, where F represents the ratio of the typ-
ical energy scale of the simulator to that of the molecule.
Here, we extend the existing closed-system simulation
approach to open-system ones and, by considering how
this change affects the possible values of F , show that
there is always a performance advantage in open-system
simulations compared to closed ones.

For open-system simulations, two sources of dissipa-
tion can be used by the simulator: native uncontrollable
dissipation and injected controllable dissipation. Native
dissipation is intrinsic, always present in the simulator,
and cannot be tuned. Conversely, injected dissipation
consists of processes that can be engineered. Native dis-
sipation is often considered to be a hindrance in quantum
systems, but, in analog simulations, it can be a valu-
able tool for open-system simulations that extends the
possible duration of simulations.

Native dissipation can be useful in an analog simu-
lation if it is Markovian and stable. As in molecules,
dominant dissipative processes in analog hardware are
usually described using Lindblad dissipators, D[Lnat

i ],
with corresponding rates, γnat

i [38]. Indeed, if the coup-
ling to the environment is weak and the secular approx-
imation holds, the same four dissipative processes that
are dominant in molecules will be dominant in the simu-
lator. We assume that the simulator’s dissipation rates
are stable, i.e., that they can be measured in a prelim-
inary experiment and remain constant throughout the
simulations. We then refer to native dissipators D[Lnat

i ]
as usable if they implement a desired molecular dissip-
ator D[Li]. In contrast, unusable dissipation includes all
native dissipators that have no analog in the molecule,
as well as processes that cannot be described by the
Lindblad formalism (e.g., non-Markovian ones).

A molecular dissipator, D[Li], can be simulated on
the analog simulator by ensuring that its dissipation
rate is related to the corresponding molecular rate by
the same scaling factor F as above, γsim

i = Fγmol
i . This

condition can be met by using native dissipation with
rate γnat

i and injecting additional dissipation of the same
type at rate γinj

i that satisfies

γsim
i = γnat

i + γinj
i = Fγmol

i . (3)
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Figure 1. Typical rates for the most-relevant dissipative processes, (left) in a trapped-ion MQB simulator [22, 29–33] and
(right) in molecules in condensed phase (modified from [1]). For both pyrazine [34–36] and triiodide [37] examples, each
dissipative rate γmol

i (and range: grey highlights) is mapped onto the corresponding trapped-ion rate γsim
i = Fγmol

i using the
scaling factor F = maxi γ

nat
i /γmol

i (black arrows). The maximum ratio is obtained for vibrational pure dephasing for triiodide
and vibrational heating for pyrazine; therefore, no injection is required for these types of dissipation. Other dissipative
processes require injected rates γinj

i (coloured arrows), to ensure that γsim
i = γnat

i + γinj
i .

For a closed-system simulation, F can be chosen
within hardware constraints, F ∈ [F cs

min, F
cs
max] (“cs” for

closed system). The lower bound, F cs
min = tmol/τ

cs
d , is set

by the ratio of the desired total simulation time in the
molecule, tmol, to the coherence time of the simulator,
τ csd , after which the simulator is deemed insufficiently
reliable. The upper bound, F cs

max, is the ratio of the
maximum simulator interaction that can be engineered
in Hsim and the largest interaction of that type in Hmol.
Consequently, the longest molecular time that can be
simulated on the specific hardware is tcsmax = τ csd F cs

max.
Including dissipation gives a new range of F for open-

system simulation, F ∈ [F os
min, F

os
max] (“os” for open sys-

tem). F os
max remains set by the hardware capabilities and

is therefore unchanged, F os
max = F cs

max. By contrast, F os
min

must now meet two conditions. First, as in the closed
simulation, F is constrained by the open-system coher-
ence time τosd of the simulator, F ≥ tmol/τ

os
d . Because

some dissipation is used in the simulation and τosd is de-
termined only by the unused dissipation, τosd > τ csd , giv-
ing an improvement over the closed-system case. Second,
because all γinj

i must be positive, eq. (3) requires that
Fγmol

i ≥ γnat
i for all i, that is, F ≥ R = maxi γ

nat
i /γmol

i .
Overall, the lower bound for the open-system simulation
is F os

min = max(tmol/τ
os
d , R).

Importantly, using some of the native noise in the
simulation always extends the maximum simulation dur-
ation. The longest possible open-system simulated time
is tosmax = τosd F os

max = τosd F cs
max; because τosd > τ csd , we find

that tosmax > tcsmax. Therefore, any hardware that can
be used for closed-system simulation can achieve longer
simulated time when used for open-system simulation.

If F os
min = R, then the F that maximises the use of

native dissipation and minimises injected dissipation is
F = F os

min; doing so means that no injected dissipation
is required for the process with the maximum ratio
γnat
i /γmol

i (see section V for two examples).

III. CLOSED-SYSTEM MQB SIMULATION

MQB simulators [18] are examples of analog quantum
simulators, in which the molecular electronic and vibra-
tional degrees of freedom are encoded in a qudit and mul-
tiple bosonic modes of the simulator. In a trapped-ion
MQB implementation, the qudit is encoded in the elec-
tronic states of one of the ions, while the bosonic modes
correspond to the collective normal modes of motion
(vibrational modes) of the ion chain. MQB simulators
are programmable because all parameters—including
the energies of all states and the couplings between de-
grees of freedom—can be controllably adjusted using
light-matter interactions [18].

The quantum resources required for an MQB simula-
tion scale linearly with molecule size [18]. A chain of N
trapped ions contains 3N vibrational modes, meaning
that a molecule with d electronic states and N vibra-
tional modes can be mapped onto a single qudit in a
chain of ⌈N/3⌉ ions.

The MQB approach implements vibronic-coupling
Hamiltonians that are expressed as power series in the
vibronic couplings [18]. The linear vibronic coupling
(LVC) Hamiltonian, where the electronic and vibrational
degrees of freedom are linearly coupled [18], is

Hmol =
∑
j

νmol
j a†jaj +

∑
n,m

c
(n,m)
0 |n⟩ ⟨m|+

∑
n

∑
j∈t

c
(n)
j√
2
(a†j + aj) |n⟩ ⟨n|+

∑
n ̸=m

∑
j∈c

c
(n,m)
j√

2
(a†j + aj) |n⟩ ⟨m| , (4)

where |n⟩ are the electronic states, aj are the annihil-
ation operators of the molecular vibrations, such that
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Qj = (a†j+aj)/
√
2, where Qj = (µmol

j νmol
j )1/2q is the di-

mensionless position of the jth mode with reduced mass
µmol
j and frequency νmol

j . The constants c
(n,n)
0 are the

electronic energies, c(n,m)
0 (n ≠ m) are the inter-state

couplings, c(n)j and c
(n,m)
j are the vibronic (vibrational-

electronic) couplings for, respectively, the tuning (j ∈ t)
and the coupling (j ∈ c) modes. Parametrising eq. (4)
requires carrying out an electronic-structure calculation
in advance [18]. Higher-order vibronic-coupling terms
could be readily included in Hmol.

The molecular Hamiltonian, Hmol, can be directly en-
coded on a trapped-ion simulator. The mapping begins
with the Hamiltonian of a chain of N ions [38],

H ion =

3N∑
j=1

νja
†
jaj +

1

2

d−1∑
n=0

ωn |n⟩ ⟨n| , (5)

where the vibrational mode j has frequency νj and ωn

is the frequency of the nth electronic state relative to
|0⟩, the lowest state used in the simulation.

The remaining terms in Hmol are simulated by adding
light-matter interactions that induce couplings in the
simulator [18]. These interactions can be implemented
through stimulated Raman transitions using pairs of
non-copropagating laser beams that are both approxim-
ately detuned by ∆ from an electronic excited state |e⟩
outside of the qudit [38–40]. The frequency difference
between the two Raman beams, ∆ωL, can be tuned
to implement all the necessary interactions: electronic
coupling, vibronic tuning, and vibronic coupling.

Electronic coupling between states |n⟩ and |m⟩ is im-
plemented by setting ∆ωL = (ωm − ωn) + (χm − χn),
where χm − χn is a frequency shift relative to the elec-
tronic transition. In the interaction picture with respect
to eq. (5) and after a rotating wave approximation, the
electronic coupling Hamiltonian is [38, 40]

H ion
e = Ωn,m |n⟩ ⟨m| e−i(χm−χn)t + h.c., (6)

with interaction strength Ωn,m = g∗n,e,Agm,e,B/2∆,
which can be adjusted by varying either the detuning ∆
or the intensity-dependent light-matter couplings g∗n,e,A
and gm,e,B of the beams coupling |n⟩ to |e⟩ and |m⟩ to
|e⟩, respectively.

Vibronic tuning is implemented by setting ∆ωL close
to the frequency of a vibrational mode j (∆ωL = νj−δj),
which, in the interaction picture with respect to eq. (5)
and after a rotating wave approximation, gives [39, 40]

H ion
t = Θ′

n,j(a
†
je

−iδjt + aje
iδjt) |n⟩ ⟨n| , (7)

where Θ′
n,j = ηg∗n,A,jgn,B,j/∆ is an AC Stark shift with

η the Lamb-Dicke parameter. Θ′
n,j can be adjusted by

varying either the detuning ∆ or the intensity-dependent
couplings gn,A,j and gn,B,j . We have omitted a Stark
shift term from eq. (7), which can be made vanishingly
small by choosing appropriate laser parameters [41, 42].

Finally, vibronic coupling requires that one of the
Raman beams be bichromatic and contain two frequency
tones of equal amplitude. The frequency differences
between each bichromatic tone and the other Raman
beam are ∆ω±

L = (ωm−ωn)±(νj+δj)+(χm−χn). This

interaction (akin to a Mølmer-Sørensen interaction [43]),
in the interaction picture with respect to eq. (5) and
after a rotating wave approximation, gives the coupling
Hamiltonian [40, 43]

H ion
c = Ω′

n,m,j(a
†
je

−iδjt + aje
iδjt)×

(|n⟩ ⟨m| e−i(χm−χn)t + h.c.), (8)

with Ω′
n,m,j = ηg∗n,m,A,jgn,m,B,j/2∆, where gn,m,A,j is

the light-matter coupling of the monochromatic Raman
beam and gn,m,B,j is the light-matter coupling of both
tones in the bichromatic Raman beam. Ω′

n,m,j can then
be adjusted by varying either ∆, gn,m,A,j , or gn,m,B,j .

The electronic-coupling, vibronic-tuning, and vibronic-
coupling Hamiltonians can be added for any modes and
any electronic states by introducing interactions as de-
scribed above. For N ions and d electronic states, and
after moving to a further interaction picture with re-
spect to H =

∑3N
j=1 δja

†
jaj+

∑d−1
n=0 χn |n⟩ ⟨n|, the overall

simulator Hamiltonian becomes

Hsim =

3N∑
j=1

δja
†
jaj +

d−1∑
n=0

χn |n⟩ ⟨n|+
∑
n ̸=m

Ωn,m |n⟩ ⟨m|

+
∑
n

∑
j∈t

Θ′
n,j(a

†
j + aj) |n⟩ ⟨n|

+
∑
n ̸=m

∑
j∈c

Ω′
n,m,j(a

†
j + aj) |n⟩ ⟨m| . (9)

Hsim is a direct mapping of the molecular Hamiltonian
of eq. (4). The simulator is fully programmable: the
parameters of eq. (9)—δj , χn, Ωn,m, Θ′

n,j , and Ω′
n,m,j—

can be tuned independently by adjusting suitable laser
parameters, such as the intensity or frequency [18].

The scaling factor F for molecular simulations on ion
traps is typically between F cs

min ∼ 10−12 and F cs
max ∼

10−10 (fixed by the maximum achievable laser power for
Raman interactions), the ratio between molecular femto-
second timescales and trapped-ion millisecond timescales.
The slower ion-trap dynamics, combined with the sub-
microsecond timing resolution of trapped-ion simulators,
means that greater time resolution is available on an
MQB simulator than in direct spectroscopic experiments
on a molecule [19]. The long coherence times in trapped-
ion systems allow the simulation of chemical dynamics
for hundreds of picoseconds [22], which is sufficient to
observe ultrafast photochemical dynamics.

IV. OPEN-SYSTEM MQB SIMULATION ON
ION TRAPS

Each chemical dissipator listed in section I can be
engineered on a trapped-ion MQB simulator, using a
combination of light-matter interactions and various
types of noise injection (summarised in fig. 1). For each
case, we derive a rate for the injected dissipation, which
we show to be fully controllable, allowing one to tune
the simulator dissipator rates of eq. (3).
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a b c

d

Figure 2. Injecting the four molecular Lindblad dissipators into a trapped-ion MQB simulator. a) Optical pumping to control
the radiative electronic relaxation from |m⟩ to |n⟩. The |m⟩ population is pumped (pink solid arrow) to an auxiliary state |l⟩,
chosen for its rapid spontaneous decay (wavy arrows) back to |n⟩ and |m⟩. The population at |m⟩ effectively decays to |n⟩
(pink dashed arrow) with rate γinj

nm. b) Resolved sideband interactions applied to an ancilla ion (A) injecting vibrational
heating and cooling. A bichromatic laser with coupling strengths Ω± (red and blue arrows) and detunings ∆ = ±νj changes
the vibrational state from |i⟩ to |i± 1⟩. This is followed by an electronic decay from |q⟩A to |p⟩A at a rate ΓA

pq (wavy arrows),
without affecting the vibrational state. c) Injection of vibrational pure dephasing. A noisy trap electrode or targeted laser
field induces fluctuations in the jth vibrational mode potential strength (blue dotted potentials), which in turn induce
fluctuations ∆δj(t) in the mode’s energy levels (small blue arrows). d) Injection of electronic pure dephasing. A noisy
magnetic field or targeted laser field induces fluctuations ∆χn(t) in the electronic energy level |n⟩ (green dotted potentials).

A. Radiative electronic relaxation

In an MQB architecture, radiative electronic relaxa-
tion corresponds to the native spontaneous decay of an
excited state |m⟩ to a lower state |n⟩ at a rate Γnm. This
is a native dissipative process with Lindblad operator
Li = |n⟩ ⟨m| and rate γnat

nm = Γnm.
When the native Γnm is insufficient to map the radi-

ative electronic relaxation rate of the molecule, optical
pumping [44]—a common technique used in operations
such as laser cooling [45], dissipative quantum state
preparation [46], and measurement [47]—can artificially
decrease the lifetime of a given excited state. The proced-
ure is depicted in fig. 2a and involves driving a transition
from |m⟩ to an auxiliary high-lying electronic state |l⟩
that can decay to |n⟩ with Γnl > Γnm. The driving
is achieved using a laser with interaction strength Ωml

and frequency ωext, which is detuned from the electronic
transition by ∆ml = ωext − (ωl − ωm). The population
in |l⟩ decays to |n⟩ and |m⟩ with rates Γnl and Γml,
respectively. Population that returns to |m⟩ repeats the
optical-pumping cycle until it is completely transferred
to |n⟩. The state |l⟩ can be adiabatically eliminated
from the dynamics when Γnl ≫ Ωml, resulting in an
effective decay rate [48]

γinj
nm =

Ω2
ml

(Γnl + Γml)2 + 4∆2
ml

Γnl. (10)

γinj
nm can be tuned over a wide range by varying the laser

properties Ωml and ∆ml.
Photon scattering during optical pumping imparts

momentum kicks to the ions that can heat the vibra-
tional modes. However, this heating rate is negligible in
practice, being quadratic in the Lamb-Dicke parameter

η, γ+ = Γ′
nmη2 [49]. Typical values Γ′

nm ≈ 0.02 s−1

and η = 0.1 give γ+ = 2 · 10−4 s−1, which is negligible
compared to typical heating rates in ion-traps, which
are in the range 0.1 to 10 s−1 (see fig. 1). In any event,
what little heating is induced could always be considered
as additional useful heating.

The derivation of eq. (10) assumes that population
can only decay from |l⟩ to |n⟩ or |m⟩. If there are
dipole-allowed transitions to other electronic states |m′⟩,
additional driving beams can repump the population
from |m′⟩ back into the optical pumping cycle [50].

B. Vibrational heating and cooling

Vibrational heating and cooling in a trapped-ion
simulator commonly occur due to electric-field noise.
This dissipation is routinely characterised experiment-
ally [51, 52] and is described by Lindblad dissipators
D[a] and D[a†]. The corresponding rates are approx-
imately, γnat

+,j = γnat
−,j exp (−νj/kBT

nat) ≈ γnat
−,j , because

typical trap frequencies (νj/2π ∼ 1MHz) are much smal-
ler than kBT

nat for T nat between 4 and 300K. These
native rates vary from 0.1 to 1000 quanta/s [31, 52, 53].
If the native dissipative rates are insufficient, additional
dissipation can be injected.

Single-mode heating and cooling

The injection of vibrational heating and cooling was
proposed for ion-trap simulators in the original MQB
paper [18]. The proposed injection was via resolved-
sideband laser interactions, where the desired molecule-
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AOM

+
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Figure 3. Simulating MQB open-system molecular dynamics in an ion trap. The ions (spheres) are trapped in vacuum in a
linear chain by two DC (end caps) and four RF electrodes (triangular blades). The closed-system simulation is achieved
using a qudit ion representing the molecular electronic states (yellow |m⟩ and red |n⟩ lines) and collective ion vibrational
modes (grey spring) representing molecular vibrations. Vibronic coupling is simulated with a bichromatic laser field (two
shades of purple) originating from a single incident laser (grey) modulated by an AOM. An open-system simulation requires
an ancilla ion (A) (which shares vibrational modes with the qudit ion) and controllable implementations of the four Lindblad
dissipators: D[|n⟩ ⟨m|] (pink) can be injected via optical pumping; D[aj ] (light blue) and D[a†

j ] (red) can be achieved using
blue- and red-sideband interactions; D[|n⟩ ⟨n|] (green), can be injected in two ways: (1) using a noisy detuning (∆χn) in the
vibronic-coupling laser or (2) using a noisy current ∆I to fluctuate the magnetic field (B0 +∆B); and D[a†

jaj ] (dark blue)
can also be implemented in two ways: (1) using a fluctuating detuning ∆νj in the vibronic-coupling laser or (2) using noisy
voltages ∆VRF and ∆VDC on the electrodes.

environment coupling and temperature could be con-
trolled by tuning the laser parameters [18]. However,
these laser interactions could change the ion’s electronic
state, disturbing the ongoing coherent simulation.

To overcome this limitation, a similar dissipation
scheme can be implemented using an ancillary ion that
shares the motion with the MQB qudit ion (i.e., sympath-
etic cooling [24, 39, 54]), without affecting the electronic
states of the qudit. Dissipators D[aj ] and D[a†j ] can then
be engineered using a bichromatic laser (one with two
frequency tones), interacting with the ancilla ion. The
frequency of each tone is set so that it sympathetically
cools or heats a shared vibrational mode. The ratio of
the two tones’ strengths can be adjusted to simulate a
desired environment’s temperature.

Figure 2b depicts the electronic transition |p⟩A → |q⟩A
in the ancillary ion A driven by a bichromatic laser. The
interaction strengths are Ω− and Ω+, with detunings
∆ = −νj for the red sideband and ∆ = +νj for the
blue sideband, respectively. The electronic population
decays from |q⟩A to |p⟩A at rate ΓA

pq (this can be due to
spontaneous emission or engineered as in eq. (10)). The
dynamics of the vibrational mode is then described by
the Lindblad master equation [55, 56]

dρj
dt

= −i[νja
†
jaj , ρj ] +

(
γinj
+,jD[a†j ] + γinj

−,jD[aj ]
)
ρj ,

(11)
where ρj is the reduced density matrix of mode j. In

the limit Ω± ≪ ΓA
pq (which usually holds in trapped-ion

simulators), the injected dissipation rates depend only
on the laser parameters [48, 55, 56]:

γinj
±,j = η2jΓ

A
pq [B(∆∓ νj) + αB(∆)] , (12)

B(∆) =
Ω2

±(
ΓA
pq

)2
+ 4∆2

, (13)

where ηj is the Lamb-Dicke parameter and α is an
angular factor (α = 2/5 for dipole transitions [48]).

In molecules, heating and cooling most commonly
arise when the molecule is coupled to a thermal envir-
onment. Simulating a thermal environment requires
that the heating and cooling rates satisfy detailed bal-
ance, γsim

+,j = γsim
−,j exp(−νj/kBT

sim), where T sim =

(νj/ν
mol
j )Tmol. In terms of the injected rates,

γinj
+,j = γinj

−,jζ
2 − γnat

−,j(1− ζ2), (14)

where ζ2 = exp(−νmol
j /kBT

mol). If, as is the case in
good ion traps, γnat

−,j ≪ γinj
−,j , the Boltzmann factor can

be incorporated into the simulation through the interac-
tion strength of eq. (12) by setting Ω+ = ζΩ−. In other
words, the environment temperature Tmol can be set
by tuning the ratio between the blue- and red-sideband
interaction strengths, while their absolute value determ-
ines the strength of the system-environment coupling.
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Global vibrational heating and cooling

Using mode-resolved laser interactions as described
above means that the number of required laser interac-
tions scales linearly with the number of modes, a cost
that can be significantly reduced if all the heating and
cooling rates are similar. In many cases, the precise
spectral density of the environment is either unknown
or unimportant; in those cases, it is common to as-
sume that the heating rates for all vibrational modes
are equal (and likewise for the cooling rates). In those
cases, where a precise spectral density is not required,
similar heating and cooling rates can be injected for all
modes using a single broadband laser that can heat and
cool all modes simultaneously. According to eq. (12),
this can be achieved if the laser parameters (ΓA

pq, Ω±,
∆) and the vibrational frequencies (νj) are similar for
all vibrational modes. A global laser interaction with a
sufficiently broadband spectrum can target all modes,
setting the same values for ΓA

pq and Ω±, as well as small
∆ for all modes.

C. Electronic and vibrational pure dephasing

Electronic and vibrational dephasing can be injected
by inducing classical stochastic fluctuations in the en-
ergy levels of the electronic and vibrational states. The
resulting dephasing rates can be tuned by controlling
the variances and correlation times of the fluctuations.

We consider a fluctuating Hamiltonian proportional
to an arbitrary operator O,

H(t) = ∆Φ(t)O, (15)

where the fluctuations, ∆Φ(t), are a zero-mean stochastic
process. To simulate pure dephasing, we consider the
ensemble average of the density matrix ⟨ρ⟩ over many
realisations of ∆Φ(t) [57, 58]. This approach reflects
experimental quantum simulations, where expectation
values are measured by averaging over many outcomes.
The resulting dissipator is [59, 60]

D[O]⟨ρ⟩ = γ
(
O⟨ρ⟩O† − 1

2{O
†O, ⟨ρ⟩}

)
, (16)

with rate γ = 1
2

∫ t

0
⟨∆Φ(t)∆Φ(s)⟩ ds, where

⟨∆Φ(t)∆Φ(s)⟩ is the auto-correlation function of
the fluctuations. For Gaussian, Markovian, and
wide-sense stationary noise, the rate simplifies to [61]

γ = 1
2 ⟨∆Φ(t)2⟩τc, (17)

where ⟨∆Φ(t)2⟩ is the variance of the noise and τc ≪ 1/γ
is its correlation time. Either of these quantities can be
used to adjust the dephasing rate.

In the following, we present several ways to inject
stochastic fluctuations into the terms of the simulator
Hamiltonian of eq. (9), in a way that results in control-
lable electronic and vibrational dephasing.

Dephasing single modes or electronic levels by noise

Vibrational and electronic pure dephasing can be inde-
pendently engineered by adding frequency fluctuations

to the laser beams that drive the closed-system dynam-
ics. Such frequency fluctuations can be imprinted on
the beams by frequency modulating the acousto-optical
modulator (AOM) already used for the closed-sysem
simulation. (fig. 3). Thus, no additional experimental
hardware is necessary to inject pure dephasing.

Vibrational pure dephasing of mode j is implemented
by injecting frequency fluctuations into both vibronic
Hamiltonians of eqs. (7) and (8), with the replacement
δj → δj + ∆δj(t). Electronic pure dephasing of qudit
levels n and m requires adding frequency fluctuations
to the coupling Hamiltonians of eqs. (6) and (8), with
the replacements χn → χn +∆χn(t) and χm → χm +
∆χm(t). To this end, we modify the frequency differences
of the Raman beams as follows. For the vibronic tuning
interaction, we set ∆ωL = νj − (δj +∆δj(t)). For the
vibronic coupling interaction, we set ∆ω±

L = (ωm−ωn)±
(ν + δj + ∆δj(t)) + (χm + ∆χm(t)) − (χn − ∆χn(t)).
For the electronic coupling interaction, we set ∆ωL =
(ωm−ωn)+(χm+∆χm(t))−(χn+∆χn(t)). Moving to an
interaction picture with these detunings, the simulation
Hamiltonian becomes

Hsim =

3N∑
j=1

(δj +∆δj(t))a
†
jaj+

d−1∑
n=0

(χn +∆χn(t)) |n⟩ ⟨n|+
∑
n ̸=m

Ω′
n,m |n⟩ ⟨m|+

∑
n

∑
j∈t

Θ′
n,j(a

†
j + aj) |n⟩ ⟨n|+∑

n ̸=m

∑
j∈c

Ω′
n,m,j(a

†
j + aj) |n⟩ ⟨m| . (18)

Hsim contains stochastic terms of the form in eq. (15),
from which we can retrieve the induced dephasing
rates. Vibrational dephasing for mode j is obtained
by setting O = a†jaj and ∆Φ(t) = ∆δ(t), resulting
in rate γinj

v,j = ⟨∆δj(t)
2⟩τc/2. Similarly, electronic de-

phasing involving qudit level n is obtained by setting
O = |n⟩ ⟨n| and ∆Φ(t) = ∆χn(t), resulting in rate
γinj
e,n = ⟨∆χn(t)

2⟩τc/2. The total electronic dephasing
rate between levels n and m is then γinj

nm = γinj
e,n + γinj

e,m.
Because the magnitudes of the fluctuations and their
correlation times are independently controlled, the de-
phasing rate of each mode and electronic level is inde-
pendently programmable.

When engineering dephasing, large frequency fluctu-
ations in the laser fields may cause unwanted off-resonant
couplings to other vibrational modes. These couplings
can be minimized by increasing τc, which leads to a smal-
ler variance of the noise, or by choosing ion trap para-
meters which increase the frequency spacings between
the vibrational modes.

Global electronic dephasing by magnetic field fluctuations

A simplified injection of electronic pure dephasing can
be implemented if all electronic states involved in the
simulation are affected by global stochastic frequency
fluctuations, creating similar pure dephasing rates. As
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in section IVB, this scheme can be used to simulate
open systems for which there is not enough informa-
tion about the pure dephasing rate of each electronic
state. Assuming that different electronic states experi-
ence similar pure dephasing rates can be a satisfactory
approximation in these cases.

Global dephasing can be implemented using fluctu-
ating magnetic fields ∆B, which alter the energies of
magnetically sensitive electronic states. To first order in
∆B, the fluctuation in the nth electronic energy is [38]

∆ωn =

(
dωn

dB

)
B0

∆B, (19)

where (dωn/dB)B0 is the sensitivity at the average field
B0. The fluctuation ∆B can be engineered using a
noisy current ∆I in the magnetic field source, such that
∆B = (dB/dI)∆I. For cylindrical solenoids, the typical
source of magnetic fields in ion traps, dB/dI = Cµ0/L,
where C is the number of windings, L is the length of
the solenoid, and µ0 is the vacuum permeability. Using
eq. (19), eq. (17) gives the injected dephasing rate,

γinj
e,n =

1

2

(
dωn

dB

dB

dI

)2

⟨∆I2⟩τc. (20)

For these rates to be similar, one needs to find electronic
states with similar dωn/dB. For states that are linearly
sensitive to the magnetic field, dωn/dB is proportional to
the projection of the total angular momentum onto the
quantisation axis (mJ), which allows states of similar
mJ to be selected as the qudit states. In particular,
hyperfine states within the same angular momentum
manifold experience similar sensitivities [62].

Global vibrational dephasing by trapping voltage fluctuations

Similarly to electronic dephasing in the previous sec-
tion, the same (or similar) vibrational pure dephasing
rates are often assumed to affect all modes in an open
molecule [34–36]. This global dephasing can be imple-
mented by injecting noise into the strength of the ions’
confining potentials, which control the vibrational mode
frequencies. This injection can be achieved by inducing
voltage fluctuations in the electrodes that create the
confining electric fields (fig. 3).

The ions’ vibrational frequencies are determined by
the three-dimensional electric fields produced by the four
radio-frequency (RF) and two static (DC) electrodes
(fig. 3). The blade electrodes, with RF signal of peak
voltage V

(0)
RF produce a radially confining potential (in

the xy plane), while the end caps with DC voltage V 0
DC

confine the ions axially (along z). A chain of N ions has
3N vibrational modes, of which the radial frequencies
νr,i are determined by the RF voltage, while the axial
frequencies νz,i by the DC voltage. One can relate the
vibrational frequencies to the center-of-mass frequencies
νr,0 and νz,0 using geometric factors: νr,i = κr,iνr,0 and
νz,i = κz,iνz,0 [38], where κr,i and κz,i are typically of
the same order of magnitude for all i [63].

Small voltage fluctuations change the vibrational fre-

quencies according to the corresponding sensitivities:

∆νr,i =

(
dνr,i
dVRF

)
V

(0)
RF

(
VRF − V

(0)
RF

)
, (21)

∆νz,i =

(
dνz,i
dVDC

)
V

(0)
DC

(
VDC − V

(0)
DC

)
. (22)

We therefore obtain the injected pure dephasing rates,

γinj
v,r,i =

1

2
κ2
r,i

(
dνr,
dVRF

)2

⟨∆V 2
RF⟩τc, (23)

γinj
v,z,i =

1

2
κ2
z,i

(
dνz,0
dVDC

)2

⟨∆V 2
DC⟩τc. (24)

Therefore, global pure vibrational dephasing can be im-
plemented if all of the geometric factors κ are sufficiently
close to each other. The variances of the pure dephas-
ing of axial and radial modes can be separately tuned
by varying the amplitudes of the DC and RF voltage
fluctuations, respectively.

V. EXAMPLES

We apply our method to two well-studied examples of
open-molecular systems: (1) triiodide in a polar solvent,
and (2) pyrazine modelled as an LVC system with dis-
sipative dynamics due to its intramolecular vibrational
modes. In both examples, we use molecular Lindblad
dissipation rates determined in earlier works and map
them to equivalent rates in an experimentally realistic
trapped-ion MQB simulator.

Our approach requires predetermined Lindblad dis-
sipation rates for the open system of interest, which are
obtainable from time-resolved spectroscopy, simulations
on classical computers, or a combination of both. For
example, time-resolved spectroscopic experiments often
report population decay and dephasing times T1 and T2,
respectively, for both electronic states and vibrational
modes. The electronic pure dephasing rate is then given
by γmol

e,n = 1/T2e − 1/2T1e, where the electronic dephas-
ing time T2e can be obtained from fitting the electronic
time-dependent spectra [36]. T1e is extracted from the
radiative quantum yield YR = T1eγ

mol
nm [36], where the

radiative electronic relaxation rate is determined by the
strength of the transition dipole moment |m⟩ → |n⟩ [36].
The analogous vibrational times T2v and T1v—also ob-
tainable from time-dependent spectroscopy—determine
γmol
−,j − γmol

+,j = 1/T1v and γmol
v,j = 1/T2v − 1/2T1v [37].

Triiodide in a polar solvent

Triiodide gained interest after time-resolved spectro-
scopic experiments of its photodissociation dynamics in
the condensed phase showed the vibrational decoherence
effects of solvents [37, 65, 66]. In particular, the key role
of the symmetric stretch mode ν1 at 112 cm−1 makes it
ideal for probing solvent effects on the dynamics.

The relevant dissipation rates were measured by pump-
ing the molecule to a dissociative electronic surface and
then monitoring the solvent-induced vibrational dissip-
ation using time-delayed probe pulses. The resulting
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Triiodide
(
F = 1.6 · 10−11

)
Pyrazine

(
F = 2.6 · 10−11

)
Dissipation γnat

i /s−1 γmol
i /ps−1 γsim

i /s−1 Implementation γmol
i /ps−1 γsim

i /s−1 Implementation

Elec. relaxation 0 0 0 Ωml/2π = 0 0 0 Ωml/2π = 0

Vib. cooling 0.20 [19] 0.52 [37] 8.6 ηΩ−/2π = 11 kHz 1.0 [34] 27 ηΩ−/2π = 20 kHz

Vib. heating 0.20 [19] 0.31 [37] 5.0 ηΩ+/2π = 8.5 kHz 0.0077 [34] 0.20 ηΩ+ = 0

Vib. dephasing 29 [19] 1.8 [37] 29
√

⟨∆δ2j ⟩/2π = 0 2.1 [36] 55
√

⟨∆δ2j ⟩/2π = 2.3 kHz

Elec. dephasing 0.12 [64] 120 [37] 2000
√

⟨∆χ2
n⟩/2π = 20 kHz 33 [35] 870

√
⟨∆χ2

n⟩/2π = 13 kHz

Table 1. Dissipation rates γmol
i and the corresponding simulated rates γsim

i = Fγmol
i in an ion-trap MQB simulator for

triiodide in solution [37] and for a 3-mode, 2-state pyrazine molecule where the dissipation is due to the other vibrational
modes. The column “Implementation” denotes experimental parameters for implementing γsim

i .

spectrum was fitted to a decaying sine function to ob-
tain the vibrational relaxation and dephasing times T1v

and T2v [37, 67]. The electronic dephasing rate was also
chosen to fit the spectral modulations. The ranges of the
corresponding dissipation rates obtained for water and
ethanol solvents are given in fig. 1. Radiative electronic
relaxation was not included because it is much slower
than the other processes.

These measured rates can be mapped onto an MQB
simulator. Table 1 shows the average of the dissipative
rates in water and ethanol and gives examples of typical
native dissipation rates γnat

i for an Yb+ trapped-ion
simulator [19, 22]. We select the scaling factor F as de-
scribed in section II to minimise the injected dissipation.
In this example, vibrational pure dephasing determines
F = γnat

v,r /γ
mol
v,1 = 1.6 · 10−11, so that no injection of this

dissipation type would be required. F is then used to
scale the other rates γsim

i in table 1. Electronic and
vibrational dephasing, occurring on timescales of tens
and hundreds of femtoseconds, respectively, would affect
the MQB dynamics on 1–30 ms timescales. Vibrational
dissipation would be mapped from a picosecond in the
molecule to 0.1 s in the ion trap.

All calculated parameters for simulating γsim
i are

within existing experimental capabilities, for which
we have used representative values from past ion-trap
MQB simulations [18, 19, 22]. The interaction strength
ηΩ−/2π = 11 kHz, and therefore also the smaller Ω+,
are well within the range achievable by tuning the
laser power [68]. Ω− is calculated from eq. (12), us-
ing ΓA

pq/2π = 20MHz and νx/2π = 1.34MHz, values
reported for an Yb+ ion trap [19]. Ω+ is obtained
from the Boltzmann factor using ν1 = 112 cm−1 and
Tmol = 300K [37]. The fluctuations for injecting elec-
tronic dephasing,

√
⟨∆χ2

n⟩/2π = 20kHz, could be im-
printed on the frequency of each Raman beam using an
AOM. The electronic dephasing rate γsim

e,n is determined
using eq. (17), where the correlation time τc must be
chosen much smaller than the dephasing timescale; we
choose τc = 10µs ≪ 1/γsim

e,n = 500 µs. This choice is
well within the capabilities of modern control electronics,
which achieves temporal resolutions of 100 ns.

Pyrazine

Pyrazine is widely used for studying ultrafast nonadia-
batic dynamics due to the conical intersection between

its excited electronic states [2]. This 24-mode molecule
has been successfully modelled as an open quantum
system in which three vibrational modes, one coupling
(ν10a) and two tuning (ν1 and ν6a), are coupled to the
first two excited electronic states, nπ∗ and ππ∗, while the
remaining 21 modes form a weakly coupled environment
that leads to dissipative dynamics [35].

As in the triiodide example, dephasing and relaxation
constants for electronic states and vibrational modes
were retrieved from fitting the experimental absorption
spectrum [3, 5, 35, 36]. Radiative electronic relaxation
from ππ∗ to nπ∗ is forbidden and not included. The pure
dephasing constant for the state ππ∗ was T ∗

2,ππ∗ = 30 fs.
We assume that the constants T1v = 1ps [3, 5] and
T2v = 320 fs [35] are the same for all modes.

Using the procedure above, we converted the dissipa-
tion times into the Lindblad rates and mapped them to
the simulator dissipative rates (table 1). In particular,
we use the tuning mode ν1 = 1016 cm−1 to exemplify
the Lindblad rates for the vibrations. In this case, F
comes from the vibrational heating of this tuning mode,
F = γnat

+,r/γ
mol
+,1 = 2.6 · 10−11, which, along with the ν6a

and ν10a modes, would not require dissipation injection,
i.e., Ω+ = 0. The other Lindblad rates are scaled as
before, γsim

i = Fγmol
i . The experimental parameters

for dissipation injection (including single-mode schemes)
are calculated as in the triiodide example and reported
in table 1. In this case, vibrational cooling could also
be implemented globally by targeting the vibrational
modes with one broadband laser interaction, such that
the laser power is adjusted to Ω− = 20 kHz. The global
vibrational dephasing scheme would also be suitable,
with fluctuations

√
⟨∆ν2r ⟩/2π = 2.3 kHz produced via

trapping potential fluctuations ∆VRF.

VI. DISCUSSION

Our approach extends molecular MQB simulation
from closed systems to open ones, the latter character-
ised by the most common set of Lindblad dissipators
used in chemistry. Dissipation can be included in the
simulation using a combination of native and injected
dissipation, an approach that turns native dissipation
into a valuable resource for analog simulation. In ad-
dition, injected dissipation, described for trapped-ion
systems, could be readily implemented using available
simulators with few additional hardware modifications



10

and independently of the molecular size.
Using native noise as a simulation resource dimin-

ishes the common argument that the accumulation of
errors makes analog simulators impractical. Dissipa-
tion and decoherence are the main sources of error in
analog devices—quantum or classical—and limit the
simulation time. However, analog classical simulations
were, despite errors, essential for classical computation
before large-scale digital computers [69]. Similarly, suc-
cessful quantum simulations of closed systems [19, 22]
have shown that available decoherence times in ana-
log quantum simulators are sufficiently low to allow
accurate simulations, up to hundreds of femtoseconds
on molecular timescales, which are the most relevant for
photochemistry. Here, we have shown that harnessing
a simulator’s native noise as a resource always extends
the possible simulation times, up to picoseconds on mo-
lecular timescales.

The result of using noise as a resource is counter-
intuitive: open-system simulation, which is usually a
harder problem than closed-system simulation, becomes
an easier problem on an MQB simulator. On both
classical and quantum digital computers, simulating
open-system dynamics requires more resources, either
to represent density matrices instead of wavefunctions
or to represent the environment (or both). By contrast,
on an analog simulator, if some of the noise is used
for the simulation, the remaining unusable dissipation
has a smaller deleterious effect, extending the possible
simulation duration.

The transition from a closed to an open simulation
requires minimal additional experimental cost on a
trapped-ion MQB simulator. When using Raman lasers
to inject dissipation, no additional hardware is required
at all, since those lasers are required for the LVC simu-
lation as well. For the other hardware we describe, such
as the magnetic-field solenoid, the overhead is constant
regardless of the system size (e.g., only one solenoid is
needed for any molecule).

Ion traps are particularly versatile MQB simulators.
The two example systems show that our approach can
accommodate a wide range of molecular systems: from
a small inorganic ion to a neutral organic molecule; from
a polar solvent to an environment of intramolecular
vibrations; different numbers of vibrational modes, with
frequencies varying by an order of magnitude; global-
and single-mode dissipation injection; and scaling-factor
selection to minimise noise injection.

Like any LVC simulation, our scheme requires a para-
metrisation of the Hamiltonian in eq. (4). As is stand-
ard in non-adiabatic dynamics, the parameters can be
obtained using a prior electronic-structure calculation.
In addition, we require values of the dissipation rates;
these can also be obtained from a prior calculation or

by comparison with experimental results on related mo-
lecules. For systems without enough experimental in-
formation and unknown dissipative rates, our global
injection schemes offer an initial approach for estim-
ation of the molecular dissipation effects and for the
interpretation of experimental data. For example, our
algorithm could be used in the quantum time-domain
spectroscopy algorithm [22] to predict or explain spectral
peak broadening in open molecular systems.

We expect that our approach can be extended to dis-
sipation models more general than the Lindblad master
equation. For example, non-Markovian environments
include strong coupling between the molecule and the
environment with long-time correlation functions [70].
One possibility for engineering a non-Markovian envir-
onment could be to inject correlated (coloured) classical
noise [71] into the amplitude and phase of the laser
beams used for vibronic and electronic coupling. Al-
ternatively, a hybrid approach could be pursued, which
combines our Lindblad techniques with an explicitly im-
plemented, strongly coupled environment, implemented
using additional ancillary ions [24, 25] or vibrational
modes (with structured spectrum).

VII. CONCLUSION

Overall, including native dissipation relaxes the exper-
imental complexity when transitioning from closed- to
open-system simulation and reduces error accumulation,
allowing for longer, more accurate analog simulations
of molecular dynamics. When injected dissipation is
necessary, minimal hardware modifications are required.
Because of the difficulty of simulating open molecular sys-
tems both classically and on digital quantum computers,
these advantages position analog quantum simulation
as a contender for achieving quantum advantage on a
problem of practical importance.
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